100以内的合数表:
4、6、8、9、10、12、14、15、16、18、20、
21、22、24、25、26、27、28、30、32、33、34、35、36、38、39、40、
42、44、45、46、48、49、50、51、52、54、55、56、57、58、60、
62、、63、64、65、66、68、69、70、72、74、75、76、77、78、80、
81、82、84、85、86、87、88、90、91、92、93、94、95、96、98、99、100。
合数的条件:
1、是两个大于1 的整数之乘积;2、拥有至少三个因数(因子);3、有至少一个素因子的非素数。4、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。
20以内的合数有几个?:合数有哪些100以内
20以内的合数有:4、6、8、9、10、12、14、15、16、18、20一共11个
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
只有1和它本身两个因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。
质数的个数是无穷的。欧几里得的《几何原本》中的证明使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
评论(0)
发表评论: